3.86 \(\int \cot ^2(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx\)

Optimal. Leaf size=158 \[ \frac{a^2 (-2 B+i A) \sqrt{a+i a \tan (c+d x)}}{d}-\frac{a^{5/2} (2 B+5 i A) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{4 \sqrt{2} a^{5/2} (B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{a A \cot (c+d x) (a+i a \tan (c+d x))^{3/2}}{d} \]

[Out]

-((a^(5/2)*((5*I)*A + 2*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d) + (4*Sqrt[2]*a^(5/2)*(I*A + B)*ArcT
anh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d + (a^2*(I*A - 2*B)*Sqrt[a + I*a*Tan[c + d*x]])/d - (a*A*C
ot[c + d*x]*(a + I*a*Tan[c + d*x])^(3/2))/d

________________________________________________________________________________________

Rubi [A]  time = 0.552072, antiderivative size = 158, normalized size of antiderivative = 1., number of steps used = 8, number of rules used = 8, integrand size = 36, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.222, Rules used = {3593, 3594, 3600, 3480, 206, 3599, 63, 208} \[ \frac{a^2 (-2 B+i A) \sqrt{a+i a \tan (c+d x)}}{d}-\frac{a^{5/2} (2 B+5 i A) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{4 \sqrt{2} a^{5/2} (B+i A) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}-\frac{a A \cot (c+d x) (a+i a \tan (c+d x))^{3/2}}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]^2*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

-((a^(5/2)*((5*I)*A + 2*B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/Sqrt[a]])/d) + (4*Sqrt[2]*a^(5/2)*(I*A + B)*ArcT
anh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d + (a^2*(I*A - 2*B)*Sqrt[a + I*a*Tan[c + d*x]])/d - (a*A*C
ot[c + d*x]*(a + I*a*Tan[c + d*x])^(3/2))/d

Rule 3593

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> -Simp[(a^2*(B*c - A*d)*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^
(n + 1))/(d*f*(b*c + a*d)*(n + 1)), x] - Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c +
 d*Tan[e + f*x])^(n + 1)*Simp[A*b*d*(m - n - 2) - B*(b*c*(m - 1) + a*d*(n + 1)) + (a*A*d*(m + n) - B*(a*c*(m -
 1) + b*d*(n + 1)))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ
[a^2 + b^2, 0] && GtQ[m, 1] && LtQ[n, -1]

Rule 3594

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*B*(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^(n + 1))/(d*f
*(m + n)), x] + Dist[1/(d*(m + n)), Int[(a + b*Tan[e + f*x])^(m - 1)*(c + d*Tan[e + f*x])^n*Simp[a*A*d*(m + n)
 + B*(a*c*(m - 1) - b*d*(n + 1)) - (B*(b*c - a*d)*(m - 1) - d*(A*b + a*B)*(m + n))*Tan[e + f*x], x], x], x] /;
 FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && GtQ[m, 1] &&  !LtQ[n, -1]

Rule 3600

Int[(((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)]))/((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[(A*b + a*B)/(b*c + a*d), Int[(a + b*Tan[e + f*x])^m, x], x] - Dist[(B*c
 - A*d)/(b*c + a*d), Int[((a + b*Tan[e + f*x])^m*(a - b*Tan[e + f*x]))/(c + d*Tan[e + f*x]), x], x] /; FreeQ[{
a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[A*b + a*B, 0]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3599

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*B)/f, Subst[Int[(a + b*x)^(m - 1)*(c + d*x)^n, x], x, Tan[e + f*x
]], x] /; FreeQ[{a, b, c, d, e, f, A, B, m, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && EqQ[A*b + a*B,
 0]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \cot ^2(c+d x) (a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \, dx &=-\frac{a A \cot (c+d x) (a+i a \tan (c+d x))^{3/2}}{d}+\int \cot (c+d x) (a+i a \tan (c+d x))^{3/2} \left (\frac{1}{2} a (5 i A+2 B)+\frac{1}{2} a (A+2 i B) \tan (c+d x)\right ) \, dx\\ &=\frac{a^2 (i A-2 B) \sqrt{a+i a \tan (c+d x)}}{d}-\frac{a A \cot (c+d x) (a+i a \tan (c+d x))^{3/2}}{d}+2 \int \cot (c+d x) \sqrt{a+i a \tan (c+d x)} \left (\frac{1}{4} a^2 (5 i A+2 B)-\frac{3}{4} a^2 (A-2 i B) \tan (c+d x)\right ) \, dx\\ &=\frac{a^2 (i A-2 B) \sqrt{a+i a \tan (c+d x)}}{d}-\frac{a A \cot (c+d x) (a+i a \tan (c+d x))^{3/2}}{d}-\left (4 a^2 (A-i B)\right ) \int \sqrt{a+i a \tan (c+d x)} \, dx+\frac{1}{2} (a (5 i A+2 B)) \int \cot (c+d x) (a-i a \tan (c+d x)) \sqrt{a+i a \tan (c+d x)} \, dx\\ &=\frac{a^2 (i A-2 B) \sqrt{a+i a \tan (c+d x)}}{d}-\frac{a A \cot (c+d x) (a+i a \tan (c+d x))^{3/2}}{d}+\frac{\left (8 a^3 (i A+B)\right ) \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}+\frac{\left (a^3 (5 i A+2 B)\right ) \operatorname{Subst}\left (\int \frac{1}{x \sqrt{a+i a x}} \, dx,x,\tan (c+d x)\right )}{2 d}\\ &=\frac{4 \sqrt{2} a^{5/2} (i A+B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}+\frac{a^2 (i A-2 B) \sqrt{a+i a \tan (c+d x)}}{d}-\frac{a A \cot (c+d x) (a+i a \tan (c+d x))^{3/2}}{d}+\frac{\left (a^2 (5 A-2 i B)\right ) \operatorname{Subst}\left (\int \frac{1}{i-\frac{i x^2}{a}} \, dx,x,\sqrt{a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac{a^{5/2} (5 i A+2 B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{a}}\right )}{d}+\frac{4 \sqrt{2} a^{5/2} (i A+B) \tanh ^{-1}\left (\frac{\sqrt{a+i a \tan (c+d x)}}{\sqrt{2} \sqrt{a}}\right )}{d}+\frac{a^2 (i A-2 B) \sqrt{a+i a \tan (c+d x)}}{d}-\frac{a A \cot (c+d x) (a+i a \tan (c+d x))^{3/2}}{d}\\ \end{align*}

Mathematica [B]  time = 6.89558, size = 413, normalized size = 2.61 \[ \frac{(a+i a \tan (c+d x))^{5/2} (A+B \tan (c+d x)) \left (e^{-3 i (c+d x)} \sqrt{\frac{e^{i (c+d x)}}{1+e^{2 i (c+d x)}}} \sqrt{1+e^{2 i (c+d x)}} \left (2 (2 B+5 i A) \left (\log \left (\left (-1+e^{i (c+d x)}\right )^2\right )-\log \left (\left (1+e^{i (c+d x)}\right )^2\right )+\log \left (-2 e^{i (c+d x)} \left (1+\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}\right )+3 e^{2 i (c+d x)}+2 \sqrt{2} \sqrt{1+e^{2 i (c+d x)}}+3\right )-\log \left (2 e^{i (c+d x)} \left (1+\sqrt{2} \sqrt{1+e^{2 i (c+d x)}}\right )+3 e^{2 i (c+d x)}+2 \sqrt{2} \sqrt{1+e^{2 i (c+d x)}}+3\right )\right )+32 \sqrt{2} (B+i A) \sinh ^{-1}\left (e^{i (c+d x)}\right )\right )-\frac{8 (\cos (2 c)-i \sin (2 c)) (A \csc (c+d x)+2 B \sec (c+d x))}{\sqrt{\sec (c+d x)} (\cos (d x)+i \sin (d x))^2}\right )}{8 d \sec ^{\frac{7}{2}}(c+d x) (A \cos (c+d x)+B \sin (c+d x))} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[c + d*x]^2*(a + I*a*Tan[c + d*x])^(5/2)*(A + B*Tan[c + d*x]),x]

[Out]

(((Sqrt[E^(I*(c + d*x))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*(32*Sqrt[2]*(I*A + B)*ArcSinh
[E^(I*(c + d*x))] + 2*((5*I)*A + 2*B)*(Log[(-1 + E^(I*(c + d*x)))^2] - Log[(1 + E^(I*(c + d*x)))^2] + Log[3 +
3*E^((2*I)*(c + d*x)) + 2*Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))] - 2*E^(I*(c + d*x))*(1 + Sqrt[2]*Sqrt[1 + E^((
2*I)*(c + d*x))])] - Log[3 + 3*E^((2*I)*(c + d*x)) + 2*Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))] + 2*E^(I*(c + d*x
))*(1 + Sqrt[2]*Sqrt[1 + E^((2*I)*(c + d*x))])])))/E^((3*I)*(c + d*x)) - (8*(A*Csc[c + d*x] + 2*B*Sec[c + d*x]
)*(Cos[2*c] - I*Sin[2*c]))/(Sqrt[Sec[c + d*x]]*(Cos[d*x] + I*Sin[d*x])^2))*(a + I*a*Tan[c + d*x])^(5/2)*(A + B
*Tan[c + d*x]))/(8*d*Sec[c + d*x]^(7/2)*(A*Cos[c + d*x] + B*Sin[c + d*x]))

________________________________________________________________________________________

Maple [B]  time = 0.471, size = 1141, normalized size = 7.2 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x)

[Out]

-1/2/d*a^2*(-2*I*B*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(
1/2))-5*I*A*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(co
s(d*x+c)+1))^(1/2)+8*A*2^(1/2)*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*
x+c)/(cos(d*x+c)+1))^(1/2))-8*I*B*2^(1/2)*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2)
*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+8*B*2^(1/2)*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1
/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))-4*I*B*cos(d*x+c)^2+2*I*A*cos(d*x+c)*sin
(d*x+c)+5*A*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))-8
*I*A*2^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))*(-2*cos(d*x+c)/(c
os(d*x+c)+1))^(1/2)+2*B*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))
^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))-8*A*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/2*2^(1/2
)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+4*I*B+8*I*B*2^(1/2)*arctan(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^
(1/2))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)-8*B*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/
2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))+8*I*A*2^(1/2)*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(
d*x+c)+1))^(1/2)*arctanh(1/2*2^(1/2)*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)/cos(d*x+c))+2*I*B*(-2*cos
(d*x+c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+2*A*cos(d*x+c)^2-5*A*(-2*cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*arctan(1/(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2))+4*B*cos(d*x+c)*sin(d*x+c)-2*B*(-2*cos(
d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))-2
*A*cos(d*x+c)-4*B*sin(d*x+c)+5*I*A*cos(d*x+c)^2*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*ln(-(-(-2*cos(d*x+c)/(cos
(d*x+c)+1))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c)))*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)/(I*sin(
d*x+c)+cos(d*x+c)-1)/sin(d*x+c)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.90083, size = 1872, normalized size = 11.85 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="fricas")

[Out]

1/2*(sqrt(2)*((-2*I*A - 4*B)*a^2*e^(2*I*d*x + 2*I*c) + (-2*I*A + 4*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e
^(I*d*x + I*c) - sqrt(-(25*A^2 - 20*I*A*B - 4*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((5*I*A +
 2*B)*a^2*e^(2*I*d*x + 2*I*c) + (5*I*A + 2*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + 2*sqrt(
-(25*A^2 - 20*I*A*B - 4*B^2)*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((5*I*A + 2*B)*a^2)) + sqrt(
-(25*A^2 - 20*I*A*B - 4*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((5*I*A + 2*B)*a^2*e^(2*I*d*x +
 2*I*c) + (5*I*A + 2*B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - 2*sqrt(-(25*A^2 - 20*I*A*B -
4*B^2)*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((5*I*A + 2*B)*a^2)) + sqrt(-(32*A^2 - 64*I*A*B -
32*B^2)*a^5/d^2)*(d*e^(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((4*I*A + 4*B)*a^2*e^(2*I*d*x + 2*I*c) + (4*I*A + 4*
B)*a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) + sqrt(-(32*A^2 - 64*I*A*B - 32*B^2)*a^5/d^2)*d*e^(2
*I*d*x + 2*I*c))*e^(-2*I*d*x - 2*I*c)/((4*I*A + 4*B)*a^2)) - sqrt(-(32*A^2 - 64*I*A*B - 32*B^2)*a^5/d^2)*(d*e^
(2*I*d*x + 2*I*c) - d)*log((sqrt(2)*((4*I*A + 4*B)*a^2*e^(2*I*d*x + 2*I*c) + (4*I*A + 4*B)*a^2)*sqrt(a/(e^(2*I
*d*x + 2*I*c) + 1))*e^(I*d*x + I*c) - sqrt(-(32*A^2 - 64*I*A*B - 32*B^2)*a^5/d^2)*d*e^(2*I*d*x + 2*I*c))*e^(-2
*I*d*x - 2*I*c)/((4*I*A + 4*B)*a^2)))/(d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)**2*(a+I*a*tan(d*x+c))**(5/2)*(A+B*tan(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int{\left (B \tan \left (d x + c\right ) + A\right )}{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac{5}{2}} \cot \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(d*x+c)^2*(a+I*a*tan(d*x+c))^(5/2)*(A+B*tan(d*x+c)),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*(I*a*tan(d*x + c) + a)^(5/2)*cot(d*x + c)^2, x)